Abstract

Simple SummaryHPV+ and HPV- HNSCC share distinct epigenetic characteristics and clinicopathological features. The aim of our study was to assess whether DNA methylation plays a role in the progression of HPV+ HNSCC. We used a HumanMethylation450 BeadChip array (Illumina) to identify PRKCZ genes exhibiting different levels of DNA methylation between HPV+ and HPV- HNSCC. PRKCZ acts as a potent tumor promoter in HPV+ HNSCC. These findings may provide a possible explanation for the differences in the clinicopathological characteristics between HPV+ and HPV- HNSCC and promising ideas for the treatment of HPV+ HNSCC.Purpose: To study the role of target genes with aberrant DNA methylation in HPV+ HNSCC. Methods: A HumanMethylation450 BeadChip array (Illumina) was used to identify differentially methylated genes. CCK-8, flow cytometry, wound healing, and cell invasion assays were conducted to analyze the biological roles of PRKCZ. Western blot, qRT-PCR, immunohistochemistry, and animal studies were performed to explore the mechanisms underlying the functions of PRKCZ. Results: We selected PRKCZ, which is associated with HPV infection, as our target gene. PRKCZ was hypermethylated in HPV+ HNSCC patients, and PRKCZ methylation status was negatively related to the pathological grading of HNSCC patients. Silencing PRKCZ inhibited the malignant capacity of HPV+ HNSCC cells. Mechanistically, HPV might promote DNMT1 expression via E6 to increase PRKCZ methylation. Cdc42 was required for the PRKCZ-mediated mechanism of action, contributing to the occurrence of epithelial-mesenchymal transition (EMT) in HPV+ HNSCC cells. In addition, blocking PRKCZ delayed tumor growth in HPV16-E6/E7 transgenic mice. Cdc42 expression was decreased, whereas E-cadherin levels increased. Conclusion: We suggest that PRKCZ hypermethylation induces EMT via Cdc42 to act as a potent tumor promoter in HPV+ HNSCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.