Abstract

Storage systems in data centers are an important component of large-scale online services. They typically perform replicated transactional operations for high data availability and integrity. Today, however, such operations suffer from high tail latency even with recent kernel bypass and storage optimizations, and thus affect the predictability of end-to-end performance of these services. We observe that the root cause of the problem is the involvement of the CPU, a precious commodity in multi-tenant settings, in the critical path of replicated transactions. In this paper, we present HyperLoop, a new framework that removes CPU from the critical path of replicated transactions in storage systems by offloading them to commodity RDMA NICs, with non-volatile memory as the storage medium. To achieve this, we develop new and general NIC offloading primitives that can perform memory operations on all nodes in a replication group while guaranteeing ACID properties without CPU involvement. We demonstrate that popular storage applications can be easily optimized using our primitives. Our evaluation results with microbenchmarks and application benchmarks show that HyperLoop can reduce 99th percentile latency ≈ 800X with close to 0% CPU consumption on replicas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.