Abstract

An increased basal plasma lactate concentration is present in many physiological and pathological conditions, including obesity and diabetes. We previously demonstrated that acute lactate infusion in rats produced a decrease in overall glucose uptake. The present study was carried out to further investigate the effect of lactate on glucose transport and utilization in skeletal muscle. In chronically catheterized rats, a 24-h sodium lactate or bicarbonate infusion was performed. To study glucose uptake in muscle, a bolus of 2-deoxy-[3H]glucose was injected in basal condition and during euglycemic-hyperinsulinemic clamp. Our results show that hyperlactatemia decreased glucose uptake in muscles (i.e., red quadriceps; P < 0.05). Moreover in red muscles, both GLUT-4 mRNA (-30% in red quadriceps and -60% in soleus; P < 0.025) and protein (-40% in red quadriceps; P < 0.05) were decreased, whereas the (E1alpha)pyruvate dehydrogenase (PDH) mRNA was increased (+40% in red quadriceps; P < 0.001) in lactate-infused animals. PDH protein was also increased (4-fold in red gastrocnemius and 2-fold in red quadriceps). These results indicate that chronic hyperlactatemia reduces glucose uptake by affecting the expression of genes involved in glucose metabolism in muscle, suggesting a role for lactate in the development of insulin resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call