Abstract

This paper describes an approach to designing, implementing, and formally verifying the functional correctness of an OS kernel, named Hyperkernel, with a high degree of proof automation and low proof burden. We base the design of Hyperkernel's interface on xv6, a Unix-like teaching operating system. Hyperkernel introduces three key ideas to achieve proof automation: it finitizes the kernel interface to avoid unbounded loops or recursion; it separates kernel and user address spaces to simplify reasoning about virtual memory; and it performs verification at the LLVM intermediate representation level to avoid modeling complicated C semantics. We have verified the implementation of Hyperkernel with the Z3 SMT solver, checking a total of 50 system calls and other trap handlers. Experience shows that Hyperkernel can avoid bugs similar to those found in xv6, and that the verification of Hyperkernel can be achieved with a low proof burden.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call