Abstract

BackgroundGain-of-function mutations in the GLUD1 gene, encoding for glutamate dehydrogenase (GDH), result in the hyperinsulinism/hyperammonemia HI/HA syndrome. HI/HA patients present with harmful hypoglycemia secondary to protein-induced HI and elevated plasma ammonia levels. These symptoms may be accompanied by seizures and mental retardation. GDH is a mitochondrial enzyme that catalyzes the oxidative deamination of glutamate to α-ketoglutarate, under allosteric regulations mediated by its inhibitor GTP and its activator ADP. The present study investigated the functional properties of the GDH-G446V variant (alias c.1496G > T, p.(Gly499Val) (NM_005271.4)) in patient-derived lymphoblastoid cells.ResultsThe calculated energy barrier between the opened and closed state of the enzyme was 41% lower in GDH-G446V compared to wild-type GDH, pointing to altered allosteric regulation. Computational analysis indicated conformational changes of GDH-G446V in the antenna region that is crucial for allosteric regulators. Enzymatic activity measured in patient-derived lymphoblastoid cells showed impaired allosteric responses of GDH-G446V to both regulators GTP and ADP. In particular, as opposed to control lymphoblastoid cells, GDH-G446V cells were not responsive to GTP in the lower range of ADP concentrations. Assessment of the metabolic rate revealed higher mitochondrial respiration in response to GDH-dependent substrates in the GDH-G446V lymphoblastoid cells compared to control cells. This indicates a shift toward glutaminolysis for energy provision in cells carrying the GDH-G446V variant.ConclusionsSubstitution of the small amino acid glycine for the hydrophobic branched-chain valine altered the allosteric sensitivity to both inhibitory action of GTP and activation by ADP, rendering cells metabolically responsive to glutamine.

Highlights

  • The incidence of congenital hyperinsulinism is estimated at 1 in 50,000 to 1 in 2500 in certain populations live births [1, 2]

  • Our study aims at the functional and enzymatic characterization of the glutamate dehydrogenase (GDH)-G446V variant (alias c.1496G>T, p.(Gly499Val) (NM_005271.4)) in lymphoblastoid cells derived from a patient identified with this pathogenic point variant

  • At the age of 4 months she was hospitalized because of hypoglycemic seizures, glucose levels were at 1.3 mM with concomitant insulin levels of 26.68 μIU/ml (= 185.3 pM) compatible with congenital hyperinsulinism

Read more

Summary

Introduction

The incidence of congenital hyperinsulinism is estimated at 1 in 50,000 (e.g., in the USA) to 1 in 2500 in certain populations (e.g., in Saudi Arabia) live births [1, 2]. Mutations in the GLUD1 gene are the second most common cause of hyperinsulinemic hypoglycemia during infancy [3, 4] with an estimate of 1 in 200,000 (ORPHA, 35878). This rare genetic disease gives rise to the hyperinsulinismhyperammonemia (HI/HA) syndrome that is caused by activating mutations in the GLUD1 gene. This gene, located on chromosome 10q23.3, is composed of 13 exons and encodes the mitochondrial enzyme glutamate dehydrogenase (GDH). The present study investigated the functional properties of the GDH-G446V variant (alias c.1496G > T, p.(Gly499Val) (NM_005271.4)) in patient-derived lymphoblastoid cells

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call