Abstract

Hypericin (Hyp) is traditionally used as an antidepressant and antiviral agent. It selectively accumulates in spheroids and is also used as a photosensitizer in the photodynamic therapy of cancer. The present study aimed to investigate the cytotoxic effect of Hyp-mediated photodynamic therapy (Hyp-PDT) on cell growth and apoptosis of K562 leukemia cells, and to examine the underlying mechanisms. Hyp-PDT was performed with different light intensities (0.1, 0.3 and 0.5 mW/cm2), different concentrations of Hyp (0, 0.2, 0.4 and 0.8 µg/ml) and different durations of irradiation (0, 2, 4 and 8 min) in order to select the optimal conditions for subsequent experiments. A concentration of 0.4 µg/ml Hyp with a 5 h drug-light interval and 4 min irradiation at 0.3 mW/cm2 light intensity was selected as the optimal conditions. The effects of Hyp-PDT on apoptosis were determined by detecting morphological changes under microscopy and by performing western blot analysis. The results revealed that Hyp-PDT suppressed cell viability in a light intensity-, dose- and irradiation duration-dependent manner. The expression levels of cleaved caspase-9, cleaved caspase-3 and phosphorylated-C-Jun N terminal kinase (JNK) l were significantly upregulated following Hyp-PDT. These results indicated that Hyp-PDT decreased cell viability and induced mitochondria-caspase-dependent apoptosis in the K562 cells through regulation of the JNK pathway. These findings suggest that Hyp-PDT may be developed as an effective treatment for leukemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call