Abstract

Hypericin is the presumed active moiety within Saint John's wort. Extracts of Saint John's wort are widely used as an effective treatment for depression. Available as "over-the-counter" drugs, they are frequently part of the self-medication of patients undergoing radiation therapy for malignant diseases. In addition to antidepressive properties, hypericin has been shown to be able to induce apoptosis and radiosensitize tumor cells, and to have antiinflammatory and phototoxic skin effects. However, the underlying mechanisms are not clear. In this study, we investigated possible inhibitory effects of hypericin on proteasome function and related pathways. Extracts from U373 human glioma cells were incubated with different concentrations of hypericin. Three proteasome activities were monitored using a fluorogenic peptide assay. Activity of the transcription factor NF-kappaB and protein levels of p65, p50, IkappaBalpha and caspase-3 were investigated by EMSA and Western blotting, respectively. Hypericin caused a dose-dependent and photoactivation-independent inhibition of proteasome function. Hypericin treatment (6.25-50 microM) inhibited NF-kappaB, caused accumulation of phosphorylated IkappaBalpha, decreased p50 protein levels and induced cleavage of p65 protein in U373 cells. These effects were observed in MCF-7 cells only at higher concentrations of hypericin (12.5-50 microM). Additionally, inhibition of NF-kappaB activity in U373 cells by hypericin was prevented by caspase inhibition. Although hypericin clearly inhibits proteasome function, its effect NF-kappaB DNA-binding activity was not exclusively proteasome-dependent. The underlying mechanism might also involve caspase activation, a consequence of proteasome inhibition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call