Abstract

Hyperhomocysteinemia (HHcy) impairs re-endothelialization and accelerates vascular remodeling. The role of CD34(+)/VEGF receptor (VEGFR) 2(+) progenitor cells (PCs) in vascular repair in HHcy is unknown. We studied the effect of HHcy on PCs and its role in vascular repair in severe HHcy (∼150 μM), which was induced in cystathionine-β synthase heterozygous mice fed a high-methionine diet for 8 weeks. Vascular injury was introduced by carotid air-dry endothelium denudation. CD34(+)/VEGFR2(+) cells were examined by flow cytometry. HHcy reduced bone marrow (BM) CD34(+)/VEGFR2(+) cells and suppressed replenishment of postinjury CD34(+)/VEGFR2(+) cells in peripheral blood (PB). Donor green fluorescent protein-positive PC homing to the injured vessel was reduced in HHcy after CD34(+) PCs from enhanced green fluorescent protein mice were adoptively transferred following carotid injury. CD34(+) PC transfusion partially reversed HHcy-suppressed re-endothelialization and HHcy-induced neointimal formation. Furthermore, homocysteine (Hcy) inhibited proliferation, adhesion, and migration and suppressed β1-integrin expression and activity in human CD34(+) endothelial colony-forming cells (ECFCs) isolated from PBs in a dose-dependent manner. A functional-activating β1-integrin antibody rescued Hcy-suppressed adhesion and migration in CD34(+) ECFCs. In conclusion, HHcy reduces BM CD34(+)/VEGFR2(+) generation and suppresses CD34(+)/VEGFR2(+) cell mobilization and homing to the injured vessel via β1-integrin inhibition, which partially contributes to impaired re-endothelialization and vascular remodeling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call