Abstract
In simultaneous multithreaded (SMT) processors, various data path resources are concurrently shared by many threads. A few heuristic approaches that explicitly distribute those resources among threads with the goal of improved overall performance have already been proposed. A selection hyperheuristic is a high-level search methodology that mixes a predetermined set of heuristics in an iterative framework to utilize their strengths for solving a given problem instance. In this study, we propose a set of selection hyperheuristics for selecting and executing the heuristic with the best performance at a given stage. To the best of our knowledge, this is one of the first studies implementing a hyperheuristic algorithm on hardware. The results of our experimental study show that hyperheuristics are indeed capable of improving the performance of the studied workloads. Our best performing hyperheuristic achieves better throughput than both baseline heuristics in 5 out of 12 workloads and gives about 15% peak performance gain. The average performance gains over the well-known hill-climbing and adaptive resource partitioning heuristics are about 5% and 2%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.