Abstract

Elongation growth of both coleoptiles and mesocotyls of maize (Zea mays L. cv. Cross Bantam T51) seedlings was inhibited under basipetal hypergravity (300 g) conditions. Hypergravity increased the pH of the apoplastic fluid of coleoptiles from 5.0 to 5.5 and mesocotyls from 5.2 to 5.7. When beta-1,3:1,4-D-glucanases (beta-glucanases) extracted from cell walls of the 1-g control coleoptiles and mesocotyls were assayed at pH 5.0 and 5.5 for coleoptiles, and at 5.2 and 5.7 for mesocotyls, respectively, the activity in the increased pH conditions was significantly lower than that in the control pH conditions. During the autolysis of the enzymically active cell wall preparations obtained from 1-g control organs, a molecular mass downshift of hemicellulosic polysaccharides occurred in cell walls. This downshift was suppressed in the increased pH conditions as compared with the control pH conditions. It was reported that hypergravity increased the molecular mass of hemicellulosic polysaccharides by decreasing the beta-glucanase activity, and thereby decreased the mechanical extensibility of cell walls in maize coleoptiles and mesocotyls. These results suggest that, in maize coleoptiles and mesocotyls, hypergravity-induced increase in the pH in the apoplastic fluid is involved in the reduction of the activity of beta-glucanases which, in turn, causes an increase in the molecular mass of hemicellulosic polysaccharides and inhibits elongation growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call