Abstract

Knowledge-based visual question answering (QA) aims to answer a question which requires visually-grounded external knowledge beyond image content itself. Answering complex questions that require multi-hop reasoning under weak supervision is considered as a challenging problem since i) no supervision is given to the reasoning process and ii) high-order semantics of multi-hop knowledge facts need to be captured. In this paper, we introduce a concept of hypergraph to encode high-level semantics of a question and a knowledge base, and to learn high-order associations between them. The proposed model, Hypergraph Transformer, constructs a question hypergraph and a query-aware knowledge hypergraph, and infers an answer by encoding inter-associations between two hypergraphs and intra-associations in both hypergraph itself. Extensive experiments on two knowledge-based visual QA and two knowledge-based textual QA demonstrate the effectiveness of our method, especially for multi-hop reasoning problem. Our source code is available at https://github.com/yujungheo/kbvqa-public.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.