Abstract

The ZH-calculus is a complete graphical calculus for linear maps between qubits that admits a straightforward encoding of hypergraph states and circuits arising from the Toffoli+Hadamard gate set. In this paper, we establish a correspondence between the ZH-calculus and the path-sum formalism, a technique recently introduced by Amy to verify quantum circuits. In particular, we find a bijection between certain canonical forms of ZH-diagrams and path-sum expressions. We then introduce and prove several new simplification rules for the ZH-calculus, which are in direct correspondence to the simplification rules of the path-sum formalism. The relatively opaque path-sum rules are shown to arise naturally from two powerful families of rewrite rules in the ZH-calculus. The first is the extension of the familiar graph-theoretic simplifications based on local complementation and pivoting to their hypergraph-theoretic analogues: hyper-local complementation and hyper-pivoting. The second is the graphical Fourier transform introduced by Kuijpers et al., which enables effective simplification of ZH-diagrams encoding multi-linear phase polynomials with arbitrary real coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.