Abstract

AbstractThe aim of this paper is to revisit the definition of differential operators on hypergraphs, which are a natural extension of graphs in systems based on interactions beyond pairs. In particular, we focus on the definition of Laplacian and p-Laplace operators for oriented and unoriented hypergraphs, their basic properties, variational structure, and their scale spaces. We illustrate that diffusion equations on hypergraphs are possible models for different applications such as information flow on social networks or image processing. Moreover, the spectral analysis and scale spaces induced by these operators provide a potential method to further analyze complex data and their multiscale structure. The quest for spectral analysis and suitable scale spaces on hypergraphs motivates in particular a definition of differential operators with trivial first eigenfunction and thus more interpretable second eigenfunctions. This property is not automatically satisfied in existing definitions of hypergraph p-Laplacians, and we hence provide a novel axiomatic approach that extends previous definitions and can be specialized to satisfy such (or other) desired properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.