Abstract
Modeling conversational context is an essential step for emotion recognition in conversations. Existing works still suffer from insufficient utilization of local context information and remote context information. This article designs a hypergraph neural network, namely HNN-ERC, to better utilize local and remote contextual information. HNN-ERC combines the recurrent neural network with the conventional hypergraph neural network to strengthen connections between utterances and make each utterance receive information from other utterances better. The proposed model has empirically achieved state-of-the-art results on three benchmark datasets, demonstrating the effectiveness and superiority of the new model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.