Abstract

The purpose of this study was to investigate the involvement of acetylcholinesterase (AChE) inhibition in hyperglycemic and stressogenic effects of monocrotophos in rats. Oral administration of monocrotophos (1.8 mg/kg b.w., 1/10 LD 50) caused reversible hyperglycemia in rats with peak increase occurring at 2 h following administration. The hyperglycemic outcome at 2 h was accompanied by significant inhibition of acetylcholinesterase (AChE) activity in brain (84%), adrenal (68%) and liver (53%) and stressogenic effects as revealed by marked increase in plasma corticosterone (102%) and liver tyrosine aminotransferase (TAT) (104%) activity. At 4 h following administration, there was normalization of hyperglycemia and hypercorticosteronemia, marginal attenuation of liver TAT activity and marked increase in liver glycogen content, without spontaneous reactivation of AChE activity in the organs studied. Interestingly, pre-treatment of rats with acetylcholine (ACh) receptor antagonists—atropine sulfate and methyl atropine nitrate offered significant protection against hyperglycemia, hypercorticosteronemia and increased liver TAT activity induced by monocrotophos. Our results clearly demonstrate the involvement of AChE inhibition in hyperglycemia and stressogenic effects of monocrotophos in rats following acute exposure. Protection offered by both, general and peripheral ACh antagonists provide further evidence for the involvement of peripheral AChE inhibition in the monocrotophos-induced effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.