Abstract
Cumulating data suggests that ion channel alterations in nociceptive neurons might be involved in the development of diabetic painful neuropathy. In the present study we investigated the involvement of ATP-sensitive potassium (K+ATP) channels in the acute effect of high glucose solution in vitro and in vivo. High glucose concentrations depolarized cultured nociceptive neurons and depolarization was blocked by the K+ATP opener, diazoxide or by insulin. Glucose injection at the rat dorsal root ganglia (L5) resulted in acute mechanical hyperalgesia that was blocked by diazoxide. Mannitol injection indicates that osmolarity changes are not responsible for glucose effect. Therefore, this study suggests that K+ATP channels expressed in peripheral sensory neurons might be involved in the development of diabetic painful neuropathy. Since sulfonylureas, that act by blocking K+ATP are used for diabetes treatment, it is important to evaluate the possible side effects of such drugs at primary sensory neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.