Abstract

Diabetes in pregnancy constitutes an unfavorable environment for embryonic and fetal development, where the child has a higher risk of perinatal morbidity and mortality, with high incidence of congenital malformations and predisposition to long-term metabolic diseases that increase with a hypercaloric diet. To analyze whether hyperglycemia differentially affects proliferation, apoptosis, and mRNA expression in cells from children of normoglycemic pregnancies (NGPs) and diabetes mellitus pregnancies (DMPs), we used umbilical cord Wharton jelly cells as a research model. Proliferation assays were performed to analyze growth and determine the doubling time, and the rate of apoptosis was determined by flow cytometry-annexin-V assays. AMPK, BNIP3, HIF1α, and p53 mRNA gene expression was assessed by semi-quantitative RT-PCR. We found that hyperglycemia decreased proliferation in a statistically significant manner in NGP cells treated with 40 mM D-glucose and in DMP cells treated with 30 and 40 mM D-glucose. Apoptosis increased in hyperglycemic conditions in NGP and DMP cells. mRNA expression of BNIP3 and p53 was significantly increased in cells from DMPs but not in cells from NGPs. We found evidence that maternal irregular metabolic conditions, like diabetes with hyperglycemia in culture, affect biological properties of fetal cells. These observations could be a constituent of fetal programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.