Abstract

PurposeThe severity of untreated or refractory diabetes mellitus has been functionally linked to elevated concentrations of free plasma glucose, clinically defined as hyperglycemia. Operationally, the pathophysiological presentations of prolonged hyperglycemia may be categorized within insulin-dependent and insulin-independent, type 1 and type 2 diabetic phenotypes, respectively. Accordingly, major areas of empirical biomedical research have focused on the elucidation of underlying mechanisms driving key cellular signaling systems that are significantly altered in patients presenting with diabetes-associated chronic hyperglycemia.MethodsPresently, we provide a translationally oriented review of key studies evaluating the aberrant effects of hyperglycemia on two major signaling pathways linked to debilitating cellular and systemic effects via targeted disruption of mitochondrial bioenergetics: (1) advanced glycation end-products (AGEs)/and their cognate receptor for advanced glycation end-products (RAGEs), and (2) the hexosamine biosynthetic pathway (HBP).ResultsIn preclinical models, cultured vascular endothelial cells exposed to hyperglycemic glucose concentrations were observed to produce enhanced levels of reactive oxygen species (ROS) functionally linked to increased formation of AGEs and expression of their cognate RAGEs. Importantly, inhibitors of AGEs formation, mitochondrial complex II, or un-couplers of oxidative phosphorylation, were observed to significantly reduce the effects of hyperglycemia on ROS production and cellular damage, thereby establishing a critical linkage to multiple levels of mitochondrial functioning. Hyperglycemia-mediated enhancement of mitochondrial ROS/superoxide production in vascular endothelial cells has been functionally linked to the shunting of glucose into the HBP with resultant long-term activation of pro-inflammatory signaling processes. Additionally, exposure of cultured cells to hyperglycemic conditions resulted in enhanced HBP-mediated inhibition of protein subunits of mitochondrial respiratory complexes I, III, and IV, intimately associated with normative cellular bioenergetics and ATP production.ConclusionsConvergent lines of evidence link chronic hyperglycemic conditions to aberrant expression of AGEs/RAGEs and HBP signaling pathways in relation to the pathophysiological formation of ROS and pro-inflammatory processes on the functional dysregulation of mitochondrial bioenergetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.