Abstract
A cosmologically viable hypergeometric model within the framework of the modified gravity theory f(R) has been derived based on the requirements of asymptotic behavior towards ΛCDM, the presence of an inflection point in the f(R) curve, and the viability conditions dictated by the phase space curves (m, r), where m and r denote characteristic functions of the model. To examine the constraints associated with these viability criteria, the models were expressed in terms of a dimensionless variable, namely R → x and f(R) → y(x) = x + h(x) + λ, where h(x) represents the deviation of the model from General Relativity. By employing the geometric properties imposed by the inflection point, differential equations were formulated to establish the relationship between and h″(x). The resulting solutions yielded models of the Starobinsky (2007) and Hu-Sawicki types. However, it was subsequently discovered that these differential equations correspond to specific cases of a hypergeometric differential equation, indicating that these models can be derived from a more general hypergeometric model. The parameter domains of this model were thoroughly analyzed to ensure its viability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.