Abstract
Mera et al. (Phys Rev Lett 115:143001, 2015) discovered that the hypergeometric function 2F1(a1,a2;b1;ωg)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${}_2F_1(a_1,a_2;b_1; \\omega g)$$\\end{document} can serve as an accurate approximant for a divergent Gevrey-1 type of series with an asymptotic large-order behavior of the form n!nbσn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n! n^b \\sigma ^n$$\\end{document}. What is strange about this approximant is that it has a series expansion with the wrong large-order behavior (Gevrey-0 type). In this work, we extend this discovery to Gevrey-k series where we show that the hypergeometric approximants and its extension to the generalized hypergeometric approximants are not only able to approximate divergent (Gevrey-1) series but also able to approximate strongly-divergent series of Gevrey-k type with k=2,3,…\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$k=2,3,\\ldots$$\\end{document}. Moreover, we show that these hypergeometric approximants are able to predict accurate results for the non-perturbative strong-coupling and large-order parameters from weak-coupling data as input. Examples studied here are the ground-state energy for the xn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x^n$$\\end{document} anharmonic oscillators. The hypergeometric approximants are also used to approximate the recent eight-loop series ( g-expansion) of the renormalization group functions for the O(N)-symmetric ϕ4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\phi ^4$$\\end{document} scalar field model. Form these functions for N=0,1,2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$N=0, 1, 2$$\\end{document}, and 3, critical exponents are extracted which are very competitive to results from more sophisticated approximation techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.