Abstract

We study propagation characteristics of hypergeometric Gaussian beam in turbulence. In this context, we formulate the receiver plane intensity using extended Huygens–Fresnel integral. From the graphical results, it is seen that, after propagation, hypergeometric Gaussian will in general assume the shape of a dark hollow beam at topological charges other than zero. Increasing values of topological charge will make the beam broader with steeper walls. On the other hand, higher values of hollowness parameter will contract into a narrower shape. Raising the topological charge or the hollowness parameter individually will cause outer rings to appear. Both increased levels of turbulence and longer propagation distances will accelerate the beam evolution and help reach the final Gaussian shape sooner. At lower wavelengths, there will be less beam spreading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.