Abstract

This note addresses the problem of localization in quantum field theory; more specifically we contribute to the ongoing discussion about the most appropriate concept of localization which one should use in relativistic quantum field theory: through localized test functions or through the fields directly without localized test functions. In standard quantum field theory, i.e., in relativistic quantum field theory in terms of tempered distributions according to Garding and Wightman, this is done through localized test functions. In hyperfunction quantum field theory (HFQFT), i.e., relativistic quantum field theory in terms of Fourier hyperfunctions this is done through the fields themselves. In support of the second approach we show here that it has a much wider range of applicability. It can even be applied to relativistic quantum field theories which do not admit compactly supported test functions at all. In our construction of explicit models we rely on basic results from the theory of quasi-analytic functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call