Abstract
The triplet states in plant photosystem II (PS II), 3P680, and from chlorophyll a, 3Chl a, in organic solution have been investigated using pulse ENDOR combined with repetitive laser excitation at cryogenic temperature with the aim to obtain their hyperfine (hf) structure. The large zero field splitting (ZFS) tensor of 3P680 enabled orientation selection via the electron spin resonance (EPR) field setting along the ZFS tensor axes. ENDOR spectra have been obtained for the first time also for the in-plane X- and Y-orientations of the ZFS tensor. This allowed a full determination of the hf-tensors of the three methine protons and one methyl group of 3P680. Based on the orientations of the axes of these hf-tensors, a unique orientation of the axes of the ZFS tensor of 3P680 in the Chl a molecular frame was obtained. These data serve as a structural basis for determining the orientation of 3P680 in the PS II protein complex by EPR on single crystals (see M. Kammel et al. in this issue). The data obtained represent the first complete set of the larger hf-tensors of the triplet state 3P680. They reflect the spin density distribution both in the highest occupied (HOMO) and lowest unoccupied (LUMO) orbitals. The data clearly confirm that 3P680 is a monomeric Chl a species at low temperature ( T=10 K) used, as has been proposed earlier based on D- and E-values obtained from EPR and optically detected magnetic resonance (ODMR) studies. Comparison with the hf data for the cation and anion radicals of Chl a indicates a redistribution of spin densities in particular for the LUMO orbital of the triplet states. The electron spin distribution in the LUMO orbital is of special interest since it harbours the excited electron in the excited P680 singlet state, from which light-induced electron transfer proceeds. Observed shifts of hf couplings from individual nuclei of 3P680 as compared with 3Chl a in organic solution are of special interest, since they indicate specific protein interactions, e.g. hydrogen bonding, which might be used in future studies for assigning 3P680 to a particular chlorophyll molecule in PS II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.