Abstract

Organic semiconductors offer a unique environment to probe the hyperfine coupling of electronic spins to a nuclear spin bath. We explore the interaction of spins in electron-hole pairs in the presence of inhomogeneous hyperfine fields by monitoring the modulation of the current through an organic light emitting diode under coherent spin-resonant excitation. At weak driving fields, only one of the two spins in the pair precesses. As the driving field exceeds the difference in local hyperfine field experienced by electron and hole, both spins precess, leading to pronounced spin beating in the transient Rabi flopping of the current. We use this effect to measure the magnitude and spatial variation in hyperfine field on the scale of single carrier pairs, as required for evaluating models of organic magnetoresistance, improving organic spintronics devices, and illuminating spin decoherence mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.