Abstract
The recombination reactions of free radicals formed from the photolysis of a series of polymerisation photoinitiators were studied using time-resolved infrared spectroscopy. All molecules showed Zeeman magnetic field effects (MFEs) in the field range 0-37 mT and those molecules that produced radical pairs with average hyperfine couplings greater than 5 mT showed substantial inverted field effects at fields of less than 10 mT (so-called low field effects, LFEs). Monte Carlo simulations with full treatment of all the isotropic hyperfine couplings in the spin Hamiltonian reproduced well the observed field effects. The use of the usual analysis based on the calculated B1/2 value for the radical pair was found to be inappropriate in systems with substantial LFEs, but simple correlations between this B1/2 value and the observed field features were established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.