Abstract

Biological soft tissues like muscles and cartilages are anisotropic, inhomogeneous, and nearly incompressible. The incompressible material behavior may lead to some difficulties in numerical simulation, such as volumetric locking and solution divergence. Mixed u-P formulations can be used to overcome incompressible material problems. The hyperelastic materials can be used to describe the biological skeletal muscle behavior. In this study, experiments are conducted to obtain the stress-strain behavior of a solid silicone rubber tube. It is used to emulate the skeletal muscle tensile behavior. The stress-strain behavior of silicone is compared with that of muscles. A commercial finite element analysis package ABAQUS is used to simulate the stress-strain behavior of silicone rubber. Results show that mixed u-P formulations with hyperelastic material model can be used to successfully simulate the muscle material behavior. Such an analysis can be used to simulate and analyze other soft tissues that show similar behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.