Abstract
We introduce a large margin linear binary classification framework that approximates each class with a hyperdisk – the intersection of the affine support and the bounding hypersphere of its training samples in feature space – and then finds the linear classifier that maximizes the margin separating the two hyperdisks. We contrast this with Support Vector Machines (SVMs), which find the maximum-margin separator of the pointwise convex hulls of the training samples, arguing that replacing convex hulls with looser convex class models such as hyperdisks provides safer margin estimates that improve the accuracy on some problems. Both the hyperdisks and their separators are found by solving simple quadratic programs. The method is extended to nonlinear feature spaces using the kernel trick, and multi-class problems are dealt with by combining binary classifiers in the same ways as for SVMs. Experiments on a range of data sets show that the method compares favourably with other popular large margin classifiers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.