Abstract
The 1990s saw the emergence of cognitive models that depend on very high dimensionality and randomness. They include Holographic Reduced Representations, Spatter Code, Semantic Vectors, Latent Semantic Analysis, Context-Dependent Thinning, and Vector-Symbolic Architecture. They represent things in high-dimensional vectors that are manipulated by operations that produce new high-dimensional vectors in the style of traditional computing, in what is called here hyperdimensional computing on account of the very high dimensionality. The paper presents the main ideas behind these models, written as a tutorial essay in hopes of making the ideas accessible and even provocative. A sketch of how we have arrived at these models, with references and pointers to further reading, is given at the end. The thesis of the paper is that hyperdimensional representation has much to offer to students of cognitive science, theoretical neuroscience, computer science and engineering, and mathematics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.