Abstract

The need for metal-free environmentally benign catalysts has provided a strong impetus toward the emergence of hypercoordinate iodine reagents. At this stage of development, molecular insights on the mechanism and origin of stereoselectivity are quite timely. In this study, the origin of stereoinduction in a class of iodoresorcinol-based chiral hypercoordinate iodine-catalyzed synthesis of biologically important spirocyclic bisoxindoles from aryl dianilides has been established by using density functional computations. Formation of an interesting helical fold by the 2,6-chiral amide arms on the resorcinol framework is found to be facilitated by a network of noncovalent interactions. In the chiral environment provided by the helical fold, enantioselectivity is surprisingly controlled in a mechanistic event prior to the ring closure to the final spirocyclic product, unlike that commonly found in spirocyclic ring formation. A vital 1,3-migration of the chiral aryl iodonium (Ar*-I(CF3COO)) in an O-iodonium en...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.