Abstract
Thermophysical properties of Fe-Cr-Ni melts are studied using electrostatic levitation and rapid solidification techniques. Six hypoeutectic Fe0.72CrwNi(0.28−w) alloys with a Cr/Ni ratio of around 0.8 were melted and solidified at different degrees of undercooling. From the observed relationship between the undercooling and thermal plateau time, the hyper-cooling limit and heat of fusion of Fe0.72CrwNi(0.28−w) melts are determined as a function of Cr mass fraction. A ratio of specific heat and total hemispherical emissivity of the Fe-Cr-Ni melts is calculated using the time-temperature profiles. A new method is presented to evaluate the temperature dependence of specific heat for undercooled melts and applied to this alloy family.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.