Abstract
A suitable notion of hypercontractivity for a nonlinear semigroup {T t } is shown to imply Nash-type inequalities for its generator H, provided a subhomogeneity property holds for the energy functional (u,Hu). We use this fact to prove that, for semigroups generated by operators of p-Laplacian-type, hypercontractivity implies ultracontractivity. Then we introduce the notion of subordinated nonlinear semigroups when the corresponding Bernstein function is f(x)=x α , and write an explicit formula for the associated generator. It is shown that hypercontractivity still holds for the subordinated semigroup and, hence, that Nash-type inequalities hold as well for the subordinated generator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.