Abstract

We generalize the concepts of weak quantum logarithmic Sobolev inequality (LSI) and weak hypercontractivity (HC), introduced in the quantum setting by Olkiewicz and Zegarlinski, to the case of non-primitive quantum Markov semigroups (QMS). The originality of this work resides in that this new notion of hypercontractivity is given in terms of the so-called amalgamatedmathbb {L}_p norms introduced recently by Junge and Parcet in the context of operator spaces theory. We make three main contributions. The first one is a version of Gross’ integration lemma: we prove that (weak) HC implies (weak) LSI. Surprisingly, the converse implication differs from the primitive case as we show that LSI implies HC but with a weak constant equal to the cardinal of the center of the decoherence-free algebra. Building on the first implication, our second contribution is the fact that strong LSI and therefore strong HC do not hold for non-trivially primitive QMS. This implies that the amalgamated mathbb {L}_p norms are not uniformly convex for 1le p le 2. As a third contribution, we derive universal bounds on the (weak) logarithmic Sobolev constants for a QMS on a finite dimensional Hilbert space, using a similar method as Diaconis and Saloff-Coste in the case of classical primitive Markov chains, and Temme, Pastawski and Kastoryano in the case of primitive QMS. This leads to new bounds on the decoherence rates of decohering QMS. Additionally, we apply our results to the study of the tensorization of HC in non-commutative spaces in terms of the completely bounded norms (CB norms) recently introduced by Beigi and King for unital and trace preserving QMS. We generalize their results to the case of a general primitive QMS and provide estimates on the (weak) constants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call