Abstract

The analysis of the structures of low-energy conformers of different α-haloacetals reveals changes in bond lengths and geometries that correspond to stabilizing orbital interactions that contribute to the ground-state structures of these systems. Several factors, including the electron-donating and electron-accepting abilities of the substituents on the ring, affect the degree of the electronic interactions in these carbohydrate-like systems. The presence of an α-halogen atom that can participate in hyperconjugation has been shown to contribute to the structural characteristics of the low-energy conformer. The experimental evidence is supported by natural bond order (NBO) analysis to identify the types of interactions and to assess their relative importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call