Abstract

We present and study a new class of Fock states underlying to discrete electromagnetic Schrödinger operators from a multivector calculus perspective. This naturally lead to hypercomplex versions of Poisson–Charlier polynomials, Meixner polynomials, among other ones. The foundations of this work are based on the exploitation of the quantum probability formulation ‘à la Dirac’ to the setting of Bayesian probabilities, on which the Fock states arise as discrete quasi-probability distributions carrying a set of independent and identically distributed (i.i.d) random variables. By employing Mellin–Barnes integrals in the complex plane we obtain counterparts for the well-known multidimensional Poisson and hypergeometric distributions, as well as quasi-probability distributions that may take negative or complex values on the lattice hZn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.