Abstract
We review the theory of hypercomplex numbers and hypercomplex analysis with the ultimate goal of applying them to issues related to the integration of systems of ordinary differential equations (ODEs). We introduce the notion of hypercomplexification, which allows the lifting of some results known for scalar ODEs to systems of ODEs. In particular, we provide another approach to the construction of superposition laws for some Riccati‐type systems, we obtain invariants of Abel‐type systems, we derive integrable Ermakov systems through hypercomplexification, we address the problem of linearization by hypercomplexification, and we provide a solution to the inverse problem of the calculus of variations for some systems of ODEs. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.