Abstract

Topological horseshoes with two-directional expansion imply invariant sets with two positive Lyapunov exponents (LE), which are recognized as a signature of hyperchaos. However, we find such horseshoes in two piecewise linear systems and one smooth system, which all exhibit chaotic attractors with one positive LE. The three concrete systems are the simple circuit by Tamaševičius et al., the Matsumoto–Chua–Kobayashi (MCK) circuit and the linearly controlled Lorenz system, respectively. Substantial numerical evidence from these systems suggests that a hyperchaotic set can be embedded in a chaotic attractor with one positive LE, and keeps existing while the attractor becomes hyperchaotic from chaotic. This paper presents such a new scenario of the continuous chaos–hyperchaos transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.