Abstract
In recent years, due to their straightforward structure and efficiency, the chaos-based cryptographic algorithms have become a good candidate for image encryption. However, they still suffer from many weaknesses, such as insensitivity to the plain image, weak key streams, small key space, non-resistance to some attacks and failure to meet some security criteria. For this purpose in this paper, a novel hybrid image encryption algorithm named Hyper-chaotic Feeded GA (HFGA) is proposed to fill the gaps in two stages; initial encryption by using a hyper-chaotic system, and then outputs reinforcement by employing a customized Genetic Algorithm (GA). By applying an innovative technique, called gene-labelling, the proposed algorithm not only optimizes the preliminary encrypted images in terms of security criteria but also allows the legal receiver to easily and securely decrypt the optimized cipher image. In fact, in the first stage, besides unpredictable random sequences generated by a hyper-chaotic system, a new sensitive diffusion function is proposed which makes the algorithm resistant to differential attacks. In the second stage, the generated cipher images, which are labeled in a special way, will be used as the initial population of a GA which enhances randomness of the cipher images. The results of several experiments and statistical analysis show that the proposed image encryption scheme provides an efficient and secure way for fast image encrypting as well as providing robustness against some well-known statistical attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.