Abstract

This paper first formulates a Hamiltonian system with hyperchaotic phenomena and investigates the equilibrium point and double Hopf bifurcation of the system. We obtain the result that the Hamiltonian system has hyperchaotic behaviors when any system parameter varies. The influences of holonomic constraint and nonholonomic constraint on the equilibrium points, invariance and the hyperchaotic state of the Hamiltonian system are then studied. Finally, we achieve the hyperchaotic control of the Hamiltonian system by introducing the constraint method. The studies indicate that the constraint can not only change the Hamiltonian system from hyperchaotic state to periodic state or chaotic state, but also make the Hamiltonian system become globally asymptotically stable. Numerical simulations, including Lyapunov exponents, bifurcation diagrams, Poincare maps and phase portraits for systems, exhibit the complex dynamical behaviors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.