Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal cancer. Hypercapnic tumor microenvironments were previously shown to promote cancer chemoresistance. In this study, we aimed to investigate the impact of tissue hypercapnia on PDAC prognosis. PDAC cancer-cell lines were cultured in normocapnic (5% CO 2 ) and hypercapnic conditions (10% CO 2 ). RNA was extracted, and whole-exome transcriptome was sequenced. Differentially expressed genes were identified and used to construct a "hypercapnic gene set." PDAC transcriptomic patient data from the Tumor Cancer Genome Atlas was used to calculate single-sample gene set enrichment scores based on each patient's tissue expression of the hypercapnic gene set. Tissue hypercapnic scores (HSs) in PDAC patients (TMN stages Ia-IIb) were determined and correlated with clinicopathological parameters and overall survival. A cohort of 135 resected stage I-II PDAC patients were assessed in this study. The average age was 65 ± 11.0 years, and the male:female ratio was 74:61. Median overall survival was 19.5 ± 1.4 months. High HSs were associated with increased tumor stage (p < 0.05) and higher lymph-node ratio (p < 0.05). In active smokers, high HS also correlated with smoking pack-years (p < 0.05). Cox regression analysis revealed high HS to be an independent prognostic factor for overall survival (hazard ratio [HR] 2.66, p = 0.004), along with lymph-node ratio (HR 4.2, p = 0.002) and age at diagnosis (HR 2.63, p = 0.01). The pancreatic tumor microenvironment plays an integral role in tumor aggressiveness, and our previous in vitro data suggest that hypercapnia promotes an aggressive, more resistant phenotype. Herein, we show that in early-stage pancreatic cancer, hypercapnic tissue signatures corresponded with a worse overall survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call