Abstract

Interactions between hypoxic and hypercapnic signaling pathways, expressed as ventilatory changes occurring during and following a simultaneous hypoxic-hypercapnic gas challenge (HH-C) have not been determined systematically in mice. This study in unanesthetized male C57BL6 mice addressed the hypothesis that hypoxic (HX) and hypercapnic (HC) signaling events display an array of interactions indicative of coordination by peripheral and central respiratory mechanisms. We evaluated the ventilatory responses elicited by hypoxic (HX-C, 10%, O2, 90% N2), hypercapnic (HC-C, 5% CO2, 21%, O2, 90% N2), and HH-C (10% O2, 5%, CO2, 85% N2) challenges to determine whether ventilatory responses elicited by HH-C were simply additive of responses elicited by HX-C and HC-C, or whether other patterns of interactions existed. Responses elicited by HH-C were additive for tidal volume, minute ventilation and expiratory time, among others. Responses elicited by HH-C were hypoadditive of the HX-C and HC-C responses (i.e., HH-C responses were less than expected by simple addition of HX-C and HC-C responses) for frequency of breathing, inspiratory time and relaxation time, among others. In addition, end-expiratory pause increased during HX-C, but decreased during HC-C and HH-C, therefore showing that HC-C responses influenced the HX-C responses when given simultaneously. Return to room-air responses was additive for tidal volume and minute ventilation, among others, whereas they were hypoadditive for frequency of breathing, inspiratory time, peak inspiratory flow, apneic pause, inspiratory and expiratory drives, and rejection index. These data show that HX-C and HH-C signaling pathways interact with one another in additive and often hypoadditive processes.NEW & NOTEWORTHY We present data showing that the ventilatory responses elicited by a hypoxic gas challenge in male C57BL6 mice are markedly altered by coexposure to hypercapnic gas challenge with hypercapnic responses often dominating the hypoxic responses. These data suggest that hypercapnic signaling processes activated within brainstem regions, such as the retrotrapezoid nuclei, may directly modulate the signaling processes within the nuclei tractus solitarius resulting from hypoxic-induced increase in carotid body chemoreceptor input to these nuclei.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call