Abstract

Persistent high-risk HPV infection is the main factor for cervical cancer. HPV E7 oncogene plays an important role in HPV carcinogenesis. Down-regulation of E7 oncogene expression could induce growth inhibition in HPV-positive cells and thus treats HPV related cervical cancer. Here we developed a non-virus gene vector based on poly(amide-amine)-poly(β-amino ester) hyperbranched copolymer (hPPC) for the delivery of CRISPR/Cas9 system to specifically cleave HPV E7 oncogene in HPV-positive cervical cancer cells. The diameter of polyplex nanoparticles (NPs) formed by hPPCs/linear poly(β-amino ester) (PBAE) and plasmids were approximately 300 nm. These hPPCs/PBAE-green fluorescence protein plasmids polyplex NPs showed high transfection efficiency and low toxicity in cells and mouse organs. By cleaving HPV16 E7 oncogene, reducing the expression of HPV16 E7 protein and increasing intracellular retinoblastoma 1 (RB1) amount, hPPCs/PBAE-CRISPR/Cas9 therapeutic plasmids polyplex NPs, especially highly branched hPPC1-plasmids polyplex NPs, exhibited strong growth inhibition of cervical cancer cells in vitro and xenograft tumors in nude mice. Together, the hPPCs/PBAE polyplex NPs to deliver HPV16 E7 targeted CRISPR/Cas9 system in this study could potentially be applied to treat HPV-related cervical cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.