Abstract
The combination of graphene oxide (GO) nanosheets and polymer matrix provides an opportunity to synthesize polymer composites with excellent engineering application performance. However, the preparation of high-performance GO-based composites is difficult because the nano-scaled GO is easily agglomerated, and the weak interface bonding force between the GO and polymer. Herein, a simple and effective method for preparing GO-based composites via hyperbranched polymer (HPB) grafting is presented. The resulting HPB-GO has uniformly dispersed in the epoxy resin (EP) matrix and combines with the matrix through chemical bonds, which has a strong interfacial acting force and improves the load transfer efficiency of the matrix to HPB-GO. Thus, the resultant EP/HPB-GO nanocomposite exhibited superior mechanical properties with a dramatic increase with only 0.2 wt% HPB-GO loading, the impact strength, the tensile strength, and the compression strength, i.e., 58.53%, 83.29%, and 57%, respectively, when compared to pure epoxy resin. Meanwhile, the nanocomposite exhibits an 80% increase in thermal conductivity (0.32 W m−1 K−1). Moreover, outstanding electrical insulation performance is obtained. The ultra-low content of HPB-GO significantly improves the performance of epoxy resin, which provides an economical and effective method to broaden the application of epoxy resin in engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.