Abstract

The synthesis of hyperbranched aminobisphosphonic acid polymers via reversible addition-fragmentation chain transfer (RAFT) self-condensing vinyl polymerization is reported. A novel acrylamide-functional chain transfer monomer is synthesized and characterized by 1 H and 13 C NMR spectroscopy, elemental analysis, and mass spectrometry. The monomer is subsequently copolymerized with an acrylamide monomer bearing a pendent amine group to create hyperbranched amine-functional polymers with degrees of branching dictated by changing the reaction stoichiometry. The aminobisphosphonate functional group is introduced via a 3-component Kabachnik-Fields reaction. An alternate functionalization of the amine polymers to create acid-degradable imine hydrogels is also employed. This work demonstrates the application of multicomponent reactions to RAFT-derived hyperbranched polymers and provides a new route to previously inaccessible polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.