Abstract
When playing music in an ensemble, musicians need to precisely coordinate their actions with one another. As shown in our previous studies on guitar duets, interbrain synchronization plays an essential role during such interactions. In this study, we simultaneously recorded electroencephalograms from four guitarists during quartet playing, to explore the extent and the functional significance of synchronized cortical activity across four brains. We found that hyperbrain networks based on intra- and interbrain connectivity across four brains dwell on higher frequencies for intrabrain communication and on lower frequencies for interbrain connections. The hyperbrain networks show small-world topology, with a tendency to become more random at lower frequencies and more regular at higher frequencies, such that local efficiency increases and global efficiency decreases with higher frequencies. We identified two different types of information flow within the hyperbrain networks-intra- versus intermodular-which are based on hyperbrain modules that include nodes from two, three, or even four brains. Furthermore, we found that hyperbrain networks are unstable and change their structure over time, often as a function of musical context. Our findings demonstrate complex hyperbrain network interactions in a guitar quartet and point to mechanisms that support temporally coordinated joint action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.