Abstract
Let $G$ be a connected graph with the usual shortest-path metric $d$. The graph $G$ is $\delta$-hyperbolic provided for any vertices $x,y,u,v$ in it, the two larger of the three sums $d(u,v)+d(x,y),d(u,x)+d(v,y)$ and $d(u,y)+d(v,x)$ differ by at most $2\delta.$ The graph $G$ is $k$-chordal provided it has no induced cycle of length greater than $k.$ Brinkmann, Koolen and Moulton find that every $3$-chordal graph is $1$-hyperbolic and that graph is not $\frac{1}{2}$-hyperbolic if and only if it contains one of two special graphs as an isometric subgraph. For every $k\geq 4,$ we show that a $k$-chordal graph must be $\frac{\lfloor\frac{k}{2}\rfloor}{2}$-hyperbolic and there does exist a $k$-chordal graph which is not $\frac{\lfloor \frac{k-2}{2}\rfloor}{2}$-hyperbolic. Moreover, we prove that a $5$-chordal graph is $\frac{1}{2}$-hyperbolic if and only if it does not contain any of a list of five special graphs as an isometric subgraph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.