Abstract

Shape space is an active research topic in computer vision and medical imaging fields. The distance defined in a shape space may provide a simple and refined index to represent a unique shape. This work studies the Wasserstein space and proposes a novel framework to compute the Wasserstein distance between general topological surfaces by integrating hyperbolic Ricci flow, hyperbolic harmonic map, and hyperbolic power Voronoi diagram algorithms. The resulting hyperbolic Wasserstein distance can intrinsically measure the similarity between general topological surfaces. Our proposed algorithms are theoretically rigorous and practically efficient. It has the potential to be a powerful tool for 3D shape indexing research. We tested our algorithm with human face classification and Alzheimer's disease (AD) progression tracking studies. Experimental results demonstrated that our work may provide a succinct and effective shape index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.