Abstract

By analogy with complex numbers, a system of hyperbolic numbers can be introduced in the same way: z=x+h*y with h*h=1 and x,y real numbers. As complex numbers are linked to the Euclidean geometry, so this system of numbers is linked to the pseudo-Euclidean plane geometry (space-time geometry). In this paper we will show how this system of numbers allows, by means of a Cartesian representation, an operative definition of hyperbolic functions using the invariance respect to special relativity Lorentz group. From this definition, by using elementary mathematics and an Euclidean approach, it is straightforward to formalize the pseudo-Euclidean trigonometry in the Cartesian plane with the same coherence as the Euclidean trigonometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.