Abstract

The standard models for groups of interacting and moving individuals (from cell biology to vertebrate population dynamics) are reaction-diffusion models. They base on Brownian motion, which is characterized by one single parameter (diffusion coefficient). In particular for moving bacteria and (slime mold) amoebae, detailed information on individual movement behavior is available (speed, run times, turn angle distributions). If such information is entered into models for populations, then reaction-transport equations or hyperbolic equations (telegraph equations, damped wave equations) result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.