Abstract
For any closed connected orientable 3-manifold M, we present a method for constructing infinitely many hyperbolic spatial embeddings of a given finite graph with no vertex of degree less than two from hyperbolic spatial graphs in S 3 via the Heegaard splitting theory. These spatial embeddings are adjustable so as to take cycle subgraphs into specified homotopy classes of loops in M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.