Abstract
A simply connected finite complex X is called elliptic if its rational homotopy Lie algebra is of finite dimension and hyperbolic otherwise. According to a conjecture of Moore, there exists an exponent for the p-torsion part of π ∗(X) if and only if X is elliptic. In this note, it is shown that, provided the prime p is sufficiently large, a hyperbolic space with p-torsion free loop space homology has no exponent in the p-torsion of the homotopy groups. For a class of formal spaces, this result is obtained for every odd prime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.